R20

Course Code: 20EC0412

SIDDHARTH GROUP OF INSTITUTIONS: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: AVLSI (20EC4212)

Regulation: R20

Course & Branch: M.Tech –VLSI

Year & Sem: I-M.Tech & II-Sem

<u>UNIT –I</u>

PRELIMINARIES

GENERAL PURPOSE METHODS FOR COMBINATIONAL OPTIMIZATION

1.	(a)What are the most important entities in VLSI design and explain in detail? (b)Draw the decomposition tree and explain.	[L2][CO1][5M] [L3][CO1][7M]
2.	(a)How combinational optimization is achieved using Local and Tabu search? (b)Explain the following: (i) Backtracking. (ii) Branch and boundprogramming	
3.	(a) Explain the different design automation tools for VLSI design (b)Explain algorithms for constrained graph compaction	[L1][CO1][6M] [L1][CO3][6M]
4.	Explain about the design methodology based on top-down structural decomposup Layout reconstruction using Gajski's y-chart.	sition and bottom [L2][CO1][12M]
5.	What are the several purpose methods for combinational optimization? Explain briefly.	[L1][CO1][12M]
6.	(a) What is the importance of design automation tools.(b) Describe any three design automation tools	[L2][CO3][3M] [L3][CO2][9M]
7.	(a)Analyze what is the need of genetic algorithm.(b)Explain about Genetic Algorithms.	[L4][CO3][6M] [L1][CO1][6M]
8.	Write about the combinatorial optimization problems and decision problems.	[L1][CO1][12M]
9.	Design dynamic programming approach for travelling salesman problem	[L3][CO3][12M]
10	With example explain briefly tractable and intractable problems related to VLS automation	SI design [L1][CO3][12M]

R20

Course Code: 20EC0412

<u>UNIT-II</u>

LAYOUT COMPACTION

MODELLING AND SIMULATION

1.	Explain briefly the following: (a) The concept of placement in VLSI design. (b) The routing problems and routing techniques in VLSI design.	[L1][CO2][6M] [L1][CO2][6M]
2.	(a)With an example, explain the difference between modeling and simulation.(b) Explain Gate level and switch level modeling.	[L1][CO3][6M] [L2][CO3][6M]
3.	(a)What is floor planning?(b) Compare the compiler driven simulation and event driven simulation	[L2][CO2][6M] [L2][CO3][6M]
4.	(a) What is layout compaction? Explain algorithms for constrained graph compaction(b) Explain about the important abstraction levels that are necessary for a specific	[L2][CO2][6M] ific simulation tool. [L2][CO2][6M]
5.	(a) What is the placement? What is the requirement of placement?(b) Explain the concept of placement with respect to layout synthesis.	[L2][CO2][5M] [L2][CO2][7M]
6.	What is meant by modeling and simulation? Differentiate gate level and sw and simulation procedures with suitable example	ritch level modeling [L2][CO2][12M]
7.	(a) What is the concept of layout compaction and clearly explain how compaction VLSI design?(b) Explain with an algorithm how routing problems can be overcome?	ion is useful for [L2][CO2][6M] [L2][CO2][6M]
8.	(a)Summarize the important abstraction levels that are necessary for a specific simulation tool	
	(b)Discuss about the compiler driven simulation and event driven simulation.	[L3][CO3][6M] [L3][CO3][6M]
9.	With suitable examples explain the switch level modeling and simulation	[L3][CO3][12M]
10	Explain the routing problems in floor planning methods of VLSI design.	[L1][CO2][12M]

Course Code: 20EC0412

<u>UNIT III</u>

LOGIC SYNTHESIS AND VERIFICATION

1.	(a) Draw Binary-Decision diagrams for an Inverter(b) Write short notes of logic synthesis	[L3][CO3] [6M] [L2][CO3] [6M]
2.	(a) What are the principles of reduced ordered binary decision diagram?(b) What are the issues and terminology involved in the combinational logic sy	[L2][CO3] [6M] ynthesis [L2][CO3] [6M]
3.	(a)Explain ROBDD implementation and construction (b)With example explain the ROBDD manipulation?	[L1][CO3][6M] [L3][CO3][6M]
4.	Explain Heuristic based on ROBDD?	[L2][CO3] [12M]
5.	(a) What is the principle of ROBDD?(b) Explain how OBDD size is reduced to obtain ROBDD?(c) Explain how ROBDDS can be used for logic verifications?	[L2][CO3] [4M] [L1][CO3] [4M] [L1][CO3] [4M]
6.	(a) What is a combinational logic synthesis?(b) With practical example explain the combinational logic synthesis?	[L2][CO3] [6M] [L3][CO4] [6M]
7.	Explain the following (a)ROBDD principles (b)ROBDD implementation and construction	[L1][CO4][6M] [L1][CO4][6M]
8.	Explain the following related to ROBDD (a) Variable ordering (b) Applications to verification	[L2][CO3] [6M] [L2][CO3] [6M]
9.	Explain how ROBDD can be used for combitorial optimization	[L1][CO3][12M]
10.	(a) What is two level logic synthesis(b)Explain problem definition and analysis in two level logic synthesis	[L2][CO3] [4M] [L1][CO3] [8M]

R20

Course Code: 20EC0412

<u>UNIT –IV</u>

HIGH-LEVEL SYNTHESIS

1.	(a) List & explain any two scheduling algorithms.(b) Describe High-level Transformation	[L3][CO4] [6M] [L1][CO4] [6M]
2.	(a) Explain the Force-directed scheduling in detail.(b) Write about the Hardware models for High-level synthesis.	[L1][CO4] [6M] [L2][CO4] [6M]
3.	(a) What is the internal representation of the input algorithm?(b)Explain any three methods	[L2][CO4] [4M] [L1][CO4] [8M]
4.	Explain the following algorithms (a) ASAP algorithm.(b) Mobility based scheduling.	[L1]CO4][6M] [L1][CO4][6M]
5.	(a) What type of Hardware components can be used by a high-level synthesis system?(b) Explain how the ASAP scheduling algorithm is used to find the longest page.	[L2][CO4][6M]
6.	With detailed example explain the allocation, assignment and scheduling	[L3][CO5][12M]
7.	Explain the following algorithms (a) Force directed scheduling(b) List scheduling	[L1][CO5][6M] [L1][CO5][6M]
8.	What are the aspects of assignment problem? Explain.	[L2][CO4][12M]
9.	(a) Explain the high-level transformations.(b)Explain dataflow graph representation.	[L1][CO4][6M] [L1][CO4][6M]
10	Explain the following algorithms (a) Simple dataflow (b) Conditional dataflow (c) Iterative dataflow	[L1][CO4][4M] [L1][CO4][4M] [L1][CO4][4M]

Course Code: 20EC0412

UNIT V

PHYSICAL DESIGN AUTOMATION OF FPGA'S

PHYSICAL DESIGN AUTOMATION OF MCM'S

1.	(a)Explain the physical design cycle of FPGA(b) How partitioning is performed for staggered model	[L1][CO5][6M] [L3][CO5][6M]
2.	Write short notes on the following: (a)Maze routing (b)Programmable MCM's	[L3][CO6][6M] [L3][CO6][6M]
3.	(a) Explain the types of logic blocks for FPGA with neat sketches(b)Develop a routing algorithm for the non-segmented model.	[L1][CO5][6M] [L6][CO5][6M]
4.	(a) With neat sketch explain about the physical design cycle of MCM.(b)Briefly explain about the different approaches to be followed for General M routing problems.	[L3][CO5][6M] ICM [L1][CO6][6M]
5.	(a) Explain the FPGA technologies.(b) How partitioning is performed for segmented model	[L2][CO5][6M] [L3][CO5][6M]
6.	(a)Briefly explain MCM technologies.(b) What are the different methods of MCM routing? Explain.	[L2][CO6][6M] [L2][CO6][6M]
7. 8	Explain the types of logic blocks and routing models for FPGA with neat sketce. Explain the following routing algorithms	ches [L1][CO5][12M]
0.	(a)Topological routing (b)Integrated pin distribution and routing	[L1][CO5][6M] [L1][CO5][6M]
9.	(a) How the routing network is modeled in FPGA?(b) Discuss the routing Algorithm for staggered model and compare it with seg	[L3][CO5][6M] gmentation model. [L3][CO5][6M]
10.	(a) What are the various steps in MCM physical design cycle? Explain them briefly.(b) Explain the method of topological routing for general MCM.	[L2][CO5][6M] [L1][CO5][6M]

Prepared by: U. SRINIVASULU,

Associate Professor,

Dept of ECE, SIETK.